1.1 Propositional Logic

  • Proposition - A statement that has a truth value.
  • Truth table and how to construct one.
  • Logical operations - and (\land), or (\lor), negation (¬\neg).
  • Implication (If assumption is false, the conclusion is always true).

    pqp\to q, if pp, then qq.
    If pp (assumption) is false, pqp\to q (conclusion) is always true.

  • Bi-implication (Double implication, if and only if) pq(pqqp)p \iff q \equiv (p \to q \land q \to p).
  • Contrapositive - The contrapositive of pq is ¬q¬pp\to q \text{ is } \lnot q \to \lnot p.

Homework

p34: 31d, 32de, 38, 39

31. Construct a truth table for each of these compound propositions.
d). (pq)(pq)(p \lor q) \to (p \land q)

Solution

pp qq pqp \lor q pqp \land q (pq)(pq)(p \lor q) \to (p \land q)
T T T T T
T F T F F
F T T F F
F F F F T

32. Construct a truth table for each of these compound propositions.
d. (pq)(pq)(p \land q) \to (p \lor q)

Solution

pp qq pqp \land q pqp \lor q (pq)(pq)(p \land q) \to (p \lor q)
T T T T T
T F F T T
F T F T T
F F F F T

e. (q¬p)(pq)(q \to \neg p) \bi (p \bi q)

Solution

pp qq q¬pq \to \neg p pqp \bi q (q¬p)(pq)(q \to \neg p) \bi (p \bi q)
T T F T F
T F T F F
F T T F F
F F T T T

38. Construct a truth table for ((pq)r)s((p \to q) \to r) \to s.

Solution

pp qq rr ss pqp \to q (pq)r(p \to q) \to r ((pq)r)s((p \to q) \to r) \to s
T T T T T T T
T T T F T T F
T T F T T F T
T T F F T F T
T F T T F T T
T F T F F T F
T F F T F T T
T F F F F T F
F T T T T T T
F T T F T T F
F T F T T F T
F T F F T F T
F F T T T T T
F F T F T T F
F F F T F T T
F F F F F T F

39. Construct a truth table for (pq)(rs)(p \bi q) \bi (r \bi s).

Solution

pp qq rr ss pqp \bi q rsr \bi s (pq)(rs)(p \bi q) \bi (r \bi s)
T T T T T T T
T T T F T F F
T T F T T F F
T T F F T T T
T F T T F T F
T F T F F F T
T F F T F F T
T F F F F T F
F T T T F T F
F T T F F F T
F T F T F F T
F T F F F T F
F F T T T T T
F F T F T F F
F F F T T F F
F F F F T T T