1.3 Propositional Equivalences

  • Propositional 1 \equiv propositional 2. These two are logically equivalent. (Use truth table to prove)
  • DeMogan's Law:

    1. ¬(pq)¬p¬q\neg (p\land q) \equiv \neg p \lor \neg q
    2. ¬(pq)¬p¬q\neg (p\lor q) \equiv \neg p \land \neg q

  • Tautology - a statement that is always true for every possible case.

Homework

p55: 15, 16, 31, 34

15. Determine whether (¬q(pq))¬p(\neg q \land (p \to q)) \to \neg p is a tautology.

Solution

pp qq pqp \to q ¬q(pq)\neg q \land (p \to q) (¬q(pq))¬p(\neg q \land (p \to q)) \to \neg p
T T T F T
T F F F T
F T T F T
F F T T T

Therefore, (¬q(pq))¬p(\neg q \land (p \to q)) \to \neg p is a tautology.

16. Show that pqp \bi q and (pq)(¬p¬q)(p \land q) \lor (\neg p \land \neg q) are logically equivalent.

Solution

pp qq pqp \bi q pqp \land q ¬p¬q\neg p \land \neg q (pq)(¬p¬q)(p \land q) \lor (\neg p \land \neg q)
T T T T F T
T F F F F F
F T F F F F
F F T F T T

Therefore, pqp \bi q and (pq)(¬p¬q)(p \land q) \lor (\neg p \land \neg q) are logically equivalent.

31. Show that (pq)r(p \to q) \to r and p(qr)p \to (q \to r) are not logically equivalent.

Solution

pp qq rr pqp \to q (pq)r(p \to q) \to r qrq \to r p(qr)p \to (q \to r)
T T T T T T T
T T F T F F F
T F T F T T T
T F F F T T T
F T T T T T T
F T F T F F T
F F T T T T T
F F F T F T T

Therefore (pq)r(p \to q) \to r and p(qr)p \to (q \to r) are not logically equivalent.

The dual of a compound proposition that contains only the logical operators ,\lor, \land and ¬\lnot is the compound proposition obtained by replacing each \lor by \land, each \land by \lor, each TT by FF, and each FF by TT. The dual of ss is denoted by ss^{*}.
34. Find the dual of each of these compound propositions.
a) p¬qp \lor \lnot q
b) p(q(rT))p \land (q \lor (r \land T))
c) (p¬q)(qF)(p \land \lnot q) \lor (q \land F)

Solution

a. (p¬q)=p¬q(p \lor \lnot q)^* = p \land \lnot q
b) [p(q(rT))]=p(q(rF)){\lb p \land (q \lor (r \land T)) \rb}^* = p \lor (q \land (r \lor F))
c) [(p¬q)(qF)]=(p¬q)(qT){\lb (p \land \lnot q) \lor (q \land F) \rb}^* = (p \lor \lnot q) \land (q \lor T)