1.5 Nested Quantifiers

Ex: 1, 2, 3, 4, 5, table 1

  • How to evaluate quantification expressions? (example and counter-example)
  • How to distribute negation in quantification expression ? (hw31, 32)

Homework

p85: 26, 27 e g h, 31b d, 46

26. Let Q(x,y)Q(x, y) be the statement “x+y=xyx + y = x - y” If the domain for both variables consists of all integers, what are the truth values?
a) Q(1,1)Q(1, 1)   b) Q(2,0)Q(2, 0)   c) yQ(1,y)\forall y Q(1, y)
d) xQ(x,2)\exists x Q(x, 2)   e) xyQ(x,y)\exists x \exists yQ(x, y)   f) xyQ(x,y)\forall x\exists yQ(x, y)
g) yxQ(x,y)\exists y \forall x Q(x, y)   h) yxQ(x,y)\forall y\exists xQ(x, y)

Solution

a) Q(1,1)1+1=11Q(1, 1) \Bi 1+1=1-1. Q(1,1)Q(1, 1) is false.
b) Q(2,0)2+0=20Q(2, 0) \Bi 2+0=2-0. Q(2,0)Q(2, 0) is true.
c) yQ(1,y)\forall y Q(1, y) denotes the proposition "For every integer y, 1+y=1y1+y=1-y holds". When y=1y=1, 1+y=1y1+y=1-y is false, therefore yQ(1,y)\forall y Q(1, y) is false.
d) xQ(x,2)\exists x Q(x, 2) denotes the proposition "There is an integer x, such that x+2=x2x+2=x-2". Such xx can not be found, xQ(x,2)\exists x Q(x, 2) is false.
e) xyQ(x,y)\exists x \exists yQ(x, y) denotes the proposition "There is a pair x,yx, y such that Q(x,y)Q(x, y)". The pair x=1,y=0x=1, y=0 satisfies Q(x,y)Q(x, y), xyQ(x,y)\exists x \exists yQ(x, y) is true.
f) xyQ(x,y)\forall x\exists yQ(x, y) denotes the proposition "For every integer xx there is an integer yy such that Q(x,y)Q(x, y)". When y=0y=0, Q(x,y)Q(x, y) is true for every integer xx, xyQ(x,y)\forall x\exists yQ(x, y) is true.
g) yxQ(x,y)\exists y \forall x Q(x, y) denots the proposition "There is an integer yy, such that for every integer xx, x+y=xyx+y=x-y holds". When y=0y=0, x+y=xyx+y=x-y holds for every xx, yxQ(x,y)\exists y \forall x Q(x, y) is true.
h) yxQ(x,y)\forall y\exists xQ(x, y) denotes the proposition "For every integer yy there is an integer xx such that Q(x,y)Q(x, y)". When y=1y=1, we could not find any xx to satisfy Q(x,y)Q(x, y), yxQ(x,y)\forall y\exists xQ(x, y) is false.

27. Determine the truth value of each of these statements if the domain for all variables consists of all integers.
e) nm(n2+m2=5)\exists n\exists m(n^2 + m^2 = 5)
g) nm(n+m=4nm=1)\exists n\exists m(n + m = 4 \land n - m = 1)
h) nm(n+m=4nm=2)\exists n\exists m(n + m = 4 \land n - m = 2)

Solution

e) The quantification nm(n2+m2=5)\exists n\exists m(n^2 + m^2 = 5) denotes the proposition "There is a pair m,nm, n such that n2+m2=5n^2 + m^2 = 5". The pair m=1,n=2m=1, n=2 satisfies n2+m2=5n^2 + m^2 = 5. Hence the statement is true.
g) The quantification nm(n+m=4nm=1)\exists n\exists m(n + m = 4 \land n - m = 1) denotes the proposition "There is a pair m,nm, n such that n+m=4nm=1n + m = 4 \land n - m = 1". We could not find any integer pair m,nm,n to satisfy n+m=4nm=1n + m = 4 \land n - m = 1, so the statement is false.
h) The quantification nm(n+m=4nm=2)\exists n\exists m(n + m = 4 \land n - m = 2) denotes the proposition "There is a pair m,nm, n such that n+m=4nm=2n + m = 4 \land n - m = 2". The pair m=1,n=3m=1,n=3 satisfies n+m=4nm=2n + m = 4 \land n - m = 2. Hence, the statement is true.

31. Express the negations of each of these statements so that all negation symbols immediately precede predicates.
b) xyP(x,y)xyQ(x,y)\forall x\exists yP (x, y) \lor \forall x\exists yQ(x, y)

Solution

¬(xyP(x,y)xyQ(x,y))¬xyP(x,y)¬xyQ(x,y)x¬yP(x,y)x¬yQ(x,y)xy¬P(x,y)xy¬Q(x,y)\begin{aligned} \neg (\forall x\exists yP (x, y) \lor \forall x\exists yQ(x, y)) &\equiv \neg \forall x\exists yP (x, y) \land \neg \forall x\exists yQ(x, y) \\ &\equiv \exists x \neg \exists yP (x, y) \land \exists x \neg \exists yQ(x, y) \\ &\equiv \exists x \forall y \neg P (x, y) \land \exists x \forall y \neg Q(x, y) \\ \end{aligned}

d) xy(P(x,y)Q(x,y))\forall x\exists y(P (x, y) \to Q(x, y))

Solution

¬xy(P(x,y)Q(x,y))x¬y(P(x,y)Q(x,y))xy¬(P(x,y)Q(x,y))xy(P(x,y)¬Q(x,y))\begin{aligned} \neg \forall x\exists y(P (x, y) \to Q(x, y)) &\equiv \exists x \neg \exists y(P (x, y) \to Q(x, y)) \\ &\equiv \exists x \forall y \neg(P (x, y) \to Q(x, y)) \\ &\equiv \exists x \forall y (P (x, y) \land \neg Q(x, y)) \end{aligned}

46. Determine the truth value of the statement xy(xy2)\exists x\forall y(x \leqslant y^2) if the domain for the variables consists of
a) the positive real numbers.
b) the integers.
c) the nonzero real numbers.

Solution

The quantification xy(xy2)\exists x\forall y(x \leqslant y^2) denotes the proposition "There is a xx such that for every yy, xy2x \leqslant y^2".
a) The statement is false when x,yx,y are positive numbers. Because y20y^2 \geqslant 0, we could not find any positive number xx that xy2x \leqslant y^2.
b) The statement is true when x,yx,y are integers. When x=0x=0, the xy2x \leqslant y^2 is true for every yy.
c) The statement is true when x,yx,y are nonzero real numbers. When x=1x=-1, the xy2x \leqslant y^2 is true for every yy.