2.2 Set Operations 
Ex: 1-9, 13, 16, 17
Union - A ∪ B = { x ∣ x ∈ A ∨ x ∈ B } A \cup B = \{x\mid x \in A \lor x \in B \} A ∪ B = { x ∣ x ∈ A ∨ x ∈ B }  
Intersection - A ∩ B = { x ∣ x ∈ A ∧ x ∈ B } A \cap B = \{x\mid x \in A \land x \in B \} A ∩ B = { x ∣ x ∈ A ∧ x ∈ B }  
Difference - A − B = { x ∣ x ∈ A ∧ x ∉ B } A - B = \{x\mid x \in A \land x \notin B \} A − B = { x ∣ x ∈ A ∧ x ∉ B }  
Complement - A ‾ = { x ∣ x ∉ A } \overline A = \{x\mid x \notin A\} A = { x ∣ x ∉ A }  
Membership table and how to construct one 
⋃ i = 1 n A i = A 1 ∪ A 2 ∪ ⋯ A n \bigcup^{n}_{i=1} A_i= A_1 \cup A_2 \cup \cdots A_n ⋃ i = 1 n  A i  = A 1  ∪ A 2  ∪ ⋯ A n  ⋂ i = 1 n A i = A 1 ∩ A 2 ∩ ⋯ A n \bigcap^{n}_{i=1} A_i= A_1 \cap A_2 \cap \cdots A_n ⋂ i = 1 n  A i  = A 1  ∩ A 2  ∩ ⋯ A n   
Homework 
p157: 13, 15, 24, 30, 31, 47, 48
13.  Prove the second absorption law from Table 1 by showing that if A A A B B B A ∩ ( A ∪ B ) = A A \cap (A \cup B) = A A ∩ ( A ∪ B ) = A 
Solution 
A A A B B B A ∪ B A \cup B A ∪ B A ∩ ( A ∪ B ) A \cap (A \cup B) A ∩ ( A ∪ B )  
 
1 
1 
1 
1 
 
1 
0 
1 
1 
 
0 
1 
1 
0 
 
0 
0 
0 
0 
 
 
 
15. Prove the second De Morgan law in Table 1 by showing that if A A A B B B A ∪ B ‾ = A ‾ ∩ B ‾ \overline{A \cup B} = \overline A \cap \overline B A ∪ B = A ∩ B 
Solution 
A ∪ B ‾ = { x ∣ x ∉ A ∪ B } = { x ∣ ¬ ( x ∈ A ∪ B ) } = { x ∣ ¬ ( x ∈ A ) ∧ ¬ ( x ∈ B ) } = { x ∣ x ∉ A ∧ x ∉ B } = { x ∣ x ∈ A ‾ ∧ x ∈ B ‾ } = { x ∣ x ∈ A ‾ ∩ B ‾ } = A ‾ ∩ B ‾ \begin{aligned}
\overline{A \cup B} &= \{x \mid x \notin {A \cup B} \} \\
&= \{x \mid \neg (x \in A \cup B) \} \\
&= \{x \mid \neg(x \in A) \land \neg(x \in B) \} \\
&= \{x \mid x \notin A \land x \notin B \} \\
&= \{x \mid x \in \overline A \land x \in \overline B \} \\
&= \{x \mid x \in \overline A \cap \overline B \} \\
&= \overline A \cap \overline B
\end{aligned}
 A ∪ B  = { x ∣ x ∉ A ∪ B } = { x ∣ ¬ ( x ∈ A ∪ B ) } = { x ∣ ¬ ( x ∈ A ) ∧ ¬ ( x ∈ B ) } = { x ∣ x ∉ A ∧ x ∉ B } = { x ∣ x ∈ A ∧ x ∈ B } = { x ∣ x ∈ A ∩ B } = A ∩ B  
 
b) using a membership table.
Solution 
A A A B B B A ∪ B A \cup B A ∪ B A ∪ B ‾ \overline {A \cup B} A ∪ B A ‾ \overline A A B ‾ \overline B B A ‾ ∩ B ‾ \overline A \cap \overline B A ∩ B  
 
1 
1 
1 
0 
0 
0 
0 
 
1 
0 
1 
0 
0 
1 
0 
 
0 
1 
1 
0 
1 
0 
0 
 
0 
0 
0 
1 
1 
1 
1 
 
 
 
24. Let A, B, and C be sets. Show that ( A − B ) − C = ( A − C ) − ( B − C ) (A - B) - C = (A - C) - (B - C) ( A − B ) − C = ( A − C ) − ( B − C ) 
Solution 
( A − C ) − ( B − C ) = ( A ∩ C ‾ ) − ( B ∩ C ‾ ) = ( A ∩ C ‾ ) ∩ ( B ∩ C ‾ ‾ ) = ( A ∩ C ‾ ) ∩ ( B ‾ ∪ C ) = [ ( A ∩ C ‾ ) ∩ B ‾ ] ∪ [ ( A ∩ C ‾ ) ∩ C ] = [ ( A ∩ B ‾ ) ∩ C ‾ ) ∪ [ A ∩ ( C ‾ ∩ C ) ] = [ ( A ∩ B ‾ ) ∩ C ‾ ) ∪ ( A ∩ ∅ ) = [ ( A ∩ B ‾ ) ∩ C ‾ ) ∪ ∅ = ( A ∩ B ‾ ) ∩ C ‾ = ( A − B ) − C \begin{aligned}
(A - C) - (B - C)&= (A \cap \overline C) - (B \cap \overline C)\\
&= (A \cap \overline C) \cap (\overline {B \cap \overline C})\\
&= (A \cap \overline C) \cap (\overline B \cup C)\\
&= [(A \cap \overline C) \cap \overline B] \cup [(A \cap \overline C) \cap C]\\
&= [(A \cap \overline B) \cap \overline C) \cup [A \cap (\overline C \cap C)]\\
&= [(A \cap \overline B) \cap \overline C) \cup (A \cap \emptyset)\\
&= [(A \cap \overline B) \cap \overline C) \cup \emptyset\\
&= (A \cap \overline B) \cap \overline C \\
&= (A - B) - C
\end{aligned}
 ( A − C ) − ( B − C )  = ( A ∩ C ) − ( B ∩ C ) = ( A ∩ C ) ∩ ( B ∩ C ) = ( A ∩ C ) ∩ ( B ∪ C ) = [ ( A ∩ C ) ∩ B ] ∪ [ ( A ∩ C ) ∩ C ] = [ ( A ∩ B ) ∩ C ) ∪ [ A ∩ ( C ∩ C ) ] = [ ( A ∩ B ) ∩ C ) ∪ ( A ∩ ∅ ) = [ ( A ∩ B ) ∩ C ) ∪ ∅ = ( A ∩ B ) ∩ C = ( A − B ) − C  
 
30. Can you conclude that A = B A = B A = B A A A B B B C C C A ∪ C = B ∪ C A \cup C = B \cup C A ∪ C = B ∪ C A ∩ C = B ∩ C A \cap C = B \cap C A ∩ C = B ∩ C A ∪ C = B ∪ C A \cup C = B \cup C A ∪ C = B ∪ C A ∩ C = B ∩ C A \cap C = B \cap C A ∩ C = B ∩ C 
Solution 
a. No. Consider A = { 1 } , B = { 2 } , C = { 1 , 2 , 3 } A = \{1\}, B = \{2\}, C = \{1, 2, 3\} A = { 1 } , B = { 2 } , C = { 1 , 2 , 3 } A ∪ C = B ∪ C A \cup C = B \cup C A ∪ C = B ∪ C A ≠ B A \ne B A ≠ B A = { 1 } , B = { 2 } , C = ∅ A = \{1\}, B = \{2\}, C = \emptyset A = { 1 } , B = { 2 } , C = ∅ A , B A, B A , B A ⊆ B A \subseteq B A ⊆ B B ⊆ A B \subseteq A B ⊆ A A ⊆ B A \subseteq B A ⊆ B x ∈ A x \in A x ∈ A 
case 1:  ( 1 ) x ∈ A ∧ x ∈ C ⇒ x ∈ A ∩ C ( 2 ) A ∩ C = B ∩ C ⇒ x ∈ B ∩ C ( 3 ) ⇒ x ∈ B case 2:  ( 1 ) x ∉ C ⇒ x ∈ A ∪ C ( 2 ) A ∪ C = B ∪ C ⇒ x ∈ B ∪ C ( 3 ) x ∉ C ⇒ x ∈ B \begin{aligned}
& \text{case 1: } \\
& (1) \quad x \in A \land x \in C \To x \in A \cap C\\
& (2) \quad A \cap C = B \cap C \To x \in B \cap C\\
& (3) \quad \To x \in B\\
& \text{case 2: } \\
& (1) \quad x \notin C \To x \in A\cup C\\
& (2) \quad A \cup C = B \cup C \To x \in B \cup C\\
& (3) \quad x \notin C \To x \in B
\end{aligned}
  case 1:  ( 1 ) x ∈ A ∧ x ∈ C ⇒ x ∈ A ∩ C ( 2 ) A ∩ C = B ∩ C ⇒ x ∈ B ∩ C ( 3 ) ⇒ x ∈ B case 2:  ( 1 ) x ∉ C ⇒ x ∈ A ∪ C ( 2 ) A ∪ C = B ∪ C ⇒ x ∈ B ∪ C ( 3 ) x ∉ C ⇒ x ∈ B  
2. Show B ⊆ A B \subseteq A B ⊆ A y ∈ B y \in B y ∈ B 
case 1:  ( 1 ) y ∈ C ⇒ y ∈ B ∩ C ( 2 ) B ∩ C = A ∩ C ⇒ y ∈ A ∩ C ( 3 ) y ∈ C ⇒ y ∈ A case 2:  ( 1 ) y ∉ C ⇒ y ∈ B ∪ C ( 2 ) B ∪ C = A ∪ C ⇒ y ∈ A ∪ C ( 3 ) y ∉ C ⇒ y ∈ A \begin{aligned}
&\text{case 1: } \\
&(1) \quad y \in C \To y \in B \cap C\\
&(2) \quad B \cap C = A \cap C \To y \in A \cap C\\
&(3) \quad y \in C \To y \in A\\
&\text{case 2: } \\
&(1) \quad y \notin C \To y \in B\cup C\\
&(2) \quad B \cup C = A \cup C \To y \in A \cup C\\
&(3) \quad y \notin C \To y \in A
\end{aligned}
  case 1:  ( 1 ) y ∈ C ⇒ y ∈ B ∩ C ( 2 ) B ∩ C = A ∩ C ⇒ y ∈ A ∩ C ( 3 ) y ∈ C ⇒ y ∈ A case 2:  ( 1 ) y ∉ C ⇒ y ∈ B ∪ C ( 2 ) B ∪ C = A ∪ C ⇒ y ∈ A ∪ C ( 3 ) y ∉ C ⇒ y ∈ A  
 
31. Let A A A B B B U U U A ⊆ B A \subseteq B A ⊆ B B ‾ ⊆ A ‾ \overline B \subseteq \overline A B ⊆ A 
Solution 
A ⊆ B ≡ { x ∣ x ∈ A → x ∈ B } ≡ { x ∣ x ∉ B → x ∉ A } ≡ { x ∣ x ∈ B ‾ → x ∈ A ‾ } ≡ B ‾ ⊆ A ‾ \begin{aligned}
A \subseteq B &\equiv \{x \mid x \in A \to x \in B\}\\
&\equiv \{x \mid x \notin B \to x \notin A\}\\
&\equiv \{x \mid x \in {\overline B} \to x \in {\overline A}\}\\
&\equiv \overline B \subseteq \overline A
\end{aligned}
 A ⊆ B  ≡ { x ∣ x ∈ A → x ∈ B } ≡ { x ∣ x ∉ B → x ∉ A } ≡ { x ∣ x ∈ B → x ∈ A } ≡ B ⊆ A  
 
47. Let A i = { 1 , 2 , 3 , ⋯ , i } A_i = \{1, 2, 3, \cdots,i\} A i  = { 1 , 2 , 3 , ⋯ , i } i = 1 , 2 , 3 , ⋯ i = 1, 2, 3, \cdots i = 1 , 2 , 3 , ⋯ ⋃ i = 1 n A i \bigcup\limits_{i=1}^n A_i i = 1 ⋃ n  A i  ⋂ i = 1 n A i \bigcap\limits_{i=1}^n A_i i = 1 ⋂ n  A i  
Solution 
a. ⋃ i = 1 n A i = { 1 , 2 , 3 , ⋯ , n } \bigcup\limits_{i=1}^n A_i = \{1, 2, 3, \cdots, n\} i = 1 ⋃ n  A i  = { 1 , 2 , 3 , ⋯ , n } ⋂ i = 1 n A i = { 1 } \bigcap\limits_{i=1}^n A_i = \{1\} i = 1 ⋂ n  A i  = { 1 } 
 
48.  Let A i = ⋯ , − 2 , − 1 , 0 , 1 , ⋯ , i A_i = {\cdots, -2, -1, 0, 1, \cdots ,i} A i  = ⋯ , − 2 , − 1 , 0 , 1 , ⋯ , i ⋃ i = 1 n A i \bigcup\limits_{i=1}^n A_i i = 1 ⋃ n  A i  ⋂ i = 1 n A i \bigcap\limits_{i=1}^n A_i i = 1 ⋂ n  A i  
Solution 
a. ⋃ i = 1 n A i = { ⋯ , − 2 , − 1 , 0 , 1 , ⋯ , n } \bigcup\limits_{i=1}^n A_i = \{\cdots, -2, -1, 0, 1, \cdots ,n\} i = 1 ⋃ n  A i  = { ⋯ , − 2 , − 1 , 0 , 1 , ⋯ , n } ⋂ i = 1 n A i = { ⋯ , − 2 , − 1 , 0 , 1 } \bigcap\limits_{i=1}^n A_i = \{\cdots, -2, -1, 0, 1\} i = 1 ⋂ n  A i  = { ⋯ , − 2 , − 1 , 0 , 1 }