2.2 Set Operations

Ex: 1-9, 13, 16, 17

  • Union - AB={xxAxB}A \cup B = \{x\mid x \in A \lor x \in B \}
  • Intersection - AB={xxAxB}A \cap B = \{x\mid x \in A \land x \in B \}
  • Difference - AB={xxAxB}A - B = \{x\mid x \in A \land x \notin B \}
  • Complement - A={xxA}\overline A = \{x\mid x \notin A\}
  • Membership table and how to construct one
  • i=1nAi=A1A2An\bigcup^{n}_{i=1} A_i= A_1 \cup A_2 \cup \cdots A_n
  • i=1nAi=A1A2An\bigcap^{n}_{i=1} A_i= A_1 \cap A_2 \cap \cdots A_n

Homework

p157: 13, 15, 24, 30, 31, 47, 48

13. Prove the second absorption law from Table 1 by showing that if AA and BB are sets, then A(AB)=AA \cap (A \cup B) = A.

Solution

AA BB ABA \cup B A(AB)A \cap (A \cup B)
1 1 1 1
1 0 1 1
0 1 1 0
0 0 0 0

15. Prove the second De Morgan law in Table 1 by showing that if AA and BB are sets, then AB=AB\overline{A \cup B} = \overline A \cap \overline B
a) by showing each side is a subset of the other side.

Solution

AB={xxAB}={x¬(xAB)}={x¬(xA)¬(xB)}={xxAxB}={xxAxB}={xxAB}=AB\begin{aligned} \overline{A \cup B} &= \{x \mid x \notin {A \cup B} \} \\ &= \{x \mid \neg (x \in A \cup B) \} \\ &= \{x \mid \neg(x \in A) \land \neg(x \in B) \} \\ &= \{x \mid x \notin A \land x \notin B \} \\ &= \{x \mid x \in \overline A \land x \in \overline B \} \\ &= \{x \mid x \in \overline A \cap \overline B \} \\ &= \overline A \cap \overline B \end{aligned}

b) using a membership table.

Solution

AA BB ABA \cup B AB\overline {A \cup B} A\overline A B\overline B AB\overline A \cap \overline B
1 1 1 0 0 0 0
1 0 1 0 0 1 0
0 1 1 0 1 0 0
0 0 0 1 1 1 1

24. Let A, B, and C be sets. Show that (AB)C=(AC)(BC)(A - B) - C = (A - C) - (B - C).

Solution

(AC)(BC)=(AC)(BC)=(AC)(BC)=(AC)(BC)=[(AC)B][(AC)C]=[(AB)C)[A(CC)]=[(AB)C)(A)=[(AB)C)=(AB)C=(AB)C\begin{aligned} (A - C) - (B - C)&= (A \cap \overline C) - (B \cap \overline C)\\ &= (A \cap \overline C) \cap (\overline {B \cap \overline C})\\ &= (A \cap \overline C) \cap (\overline B \cup C)\\ &= [(A \cap \overline C) \cap \overline B] \cup [(A \cap \overline C) \cap C]\\ &= [(A \cap \overline B) \cap \overline C) \cup [A \cap (\overline C \cap C)]\\ &= [(A \cap \overline B) \cap \overline C) \cup (A \cap \emptyset)\\ &= [(A \cap \overline B) \cap \overline C) \cup \emptyset\\ &= (A \cap \overline B) \cap \overline C \\ &= (A - B) - C \end{aligned}

30. Can you conclude that A=BA = B if AA, BB, and CC are sets such that
a) AC=BCA \cup C = B \cup C?
b) AC=BCA \cap C = B \cap C?
c) AC=BCA \cup C = B \cup C and AC=BCA \cap C = B \cap C?

Solution

a. No. Consider A={1},B={2},C={1,2,3}A = \{1\}, B = \{2\}, C = \{1, 2, 3\}, AC=BCA \cup C = B \cup C, but ABA \ne B.
b. No. Consider A={1},B={2},C=A = \{1\}, B = \{2\}, C = \emptyset.
c. True. To prove two sets A,BA, B are equal, we need to prove ABA \subseteq B, and BAB \subseteq A.
1. Show ABA \subseteq B. Let xAx \in A,

case 1: (1)xAxCxAC(2)AC=BCxBC(3)xBcase 2: (1)xCxAC(2)AC=BCxBC(3)xCxB\begin{aligned} & \text{case 1: } \\ & (1) \quad x \in A \land x \in C \To x \in A \cap C\\ & (2) \quad A \cap C = B \cap C \To x \in B \cap C\\ & (3) \quad \To x \in B\\ & \text{case 2: } \\ & (1) \quad x \notin C \To x \in A\cup C\\ & (2) \quad A \cup C = B \cup C \To x \in B \cup C\\ & (3) \quad x \notin C \To x \in B \end{aligned}

2. Show BAB \subseteq A. Let yBy \in B,

case 1: (1)yCyBC(2)BC=ACyAC(3)yCyAcase 2: (1)yCyBC(2)BC=ACyAC(3)yCyA\begin{aligned} &\text{case 1: } \\ &(1) \quad y \in C \To y \in B \cap C\\ &(2) \quad B \cap C = A \cap C \To y \in A \cap C\\ &(3) \quad y \in C \To y \in A\\ &\text{case 2: } \\ &(1) \quad y \notin C \To y \in B\cup C\\ &(2) \quad B \cup C = A \cup C \To y \in A \cup C\\ &(3) \quad y \notin C \To y \in A \end{aligned}

31. Let AA and BB be subsets of a universal set UU. Show that ABA \subseteq B if and only if BA\overline B \subseteq \overline A.

Solution

AB{xxAxB}{xxBxA}{xxBxA}BA\begin{aligned} A \subseteq B &\equiv \{x \mid x \in A \to x \in B\}\\ &\equiv \{x \mid x \notin B \to x \notin A\}\\ &\equiv \{x \mid x \in {\overline B} \to x \in {\overline A}\}\\ &\equiv \overline B \subseteq \overline A \end{aligned}

47. Let Ai={1,2,3,,i}A_i = \{1, 2, 3, \cdots,i\} for i=1,2,3,i = 1, 2, 3, \cdots Find
a) i=1nAi\bigcup\limits_{i=1}^n A_i   b) i=1nAi\bigcap\limits_{i=1}^n A_i

Solution

a. i=1nAi={1,2,3,,n}\bigcup\limits_{i=1}^n A_i = \{1, 2, 3, \cdots, n\}
b. i=1nAi={1}\bigcap\limits_{i=1}^n A_i = \{1\}

48. Let Ai=,2,1,0,1,,iA_i = {\cdots, -2, -1, 0, 1, \cdots ,i}. Find
a) i=1nAi\bigcup\limits_{i=1}^n A_i   b) i=1nAi\bigcap\limits_{i=1}^n A_i

Solution

a. i=1nAi={,2,1,0,1,,n}\bigcup\limits_{i=1}^n A_i = \{\cdots, -2, -1, 0, 1, \cdots ,n\}
b. i=1nAi={,2,1,0,1}\bigcap\limits_{i=1}^n A_i = \{\cdots, -2, -1, 0, 1\}