6.4 Binomial Coefficients
p436
THE BINOMIAL THEOREM Let x and y be variables, and let n be a nonnegative integer. Then
(x+y)n=(0n)xny0+(1n)xn−1y1+⋯+(nn)x0yn=k=0∑nxn−kyk
Examples
1-4
Homework
p443: 4, 7, 8, 9
4. Find the coefficient of x5y8 in (x+y)13.
Solution
(x+y)13=k=0∑13(k13)x13−kyk
The coefficient of x5y8 is (813)=5!8!13!.
7. What is the coefficient of x9 in (2−x)19?
Solution
(2−x)19=k=0∑19(k19)219−k(−x)k
The coefficient of x9 is (919)⋅210⋅(−1)9=−10!9!29⋅19!.
8. What is the coefficient of x8y9 in the expansion of (3x+2y)17?
Solution
(3x+2y)17=k=0∑17(k17)(3x)17−k(2y)k
The coefficient of x8y9 is (917)⋅38⋅29=8!9!38⋅29⋅17!.
9. What is the coefficient of x101y99 in the expansion of (2x−3y)200?
Solution
(2x−3y)200=k=0∑200(k200)(2x)200−k(−3y)k
The coefficient of x101y99 is (99200)⋅2101⋅(−3)99=−101!99!2101⋅399⋅200!.