6.4 Binomial Coefficients

p436

THE BINOMIAL THEOREM Let xx and yy be variables, and let n be a nonnegative integer. Then

(x+y)n=(n0)xny0+(n1)xn1y1++(nn)x0yn=k=0nxnkyk\begin{aligned} (x+y)^n &= \binom{n}{0}x^ny^0 + \binom{n}{1}x^{n-1}y^1 + \cdots + \binom{n}{n}x^0y^n\\ &=\sum^n_{k=0}x^{n-k}y^k \end{aligned}

Examples

1-4

Homework

p443: 4, 7, 8, 9

4. Find the coefficient of x5y8x^5y^8 in (x+y)13(x + y)^{13}.

Solution

(x+y)13=k=013(13k)x13kyk(x+y)^{13} = \sum^{13}_{k=0}\binom{13}{k}x^{13-k}y^k

The coefficient of x5y8x^5y^8 is (138)=13!5!8!\tbinom{13}{8} = \frac{13!}{5!8!}.

7. What is the coefficient of x9x^9 in (2x)19(2-x)^{19}?

Solution

(2x)19=k=019(19k)219k(x)k(2-x)^{19} = \sum^{19}_{k=0}\binom{19}{k}2^{19-k}(-x)^k

The coefficient of x9x^9 is (199)210(1)9=2919!10!9!\tbinom{19}{9} \cdot 2^{10} \cdot (-1)^9= -\frac{2^9\cdot 19!}{10!9!}.

8. What is the coefficient of x8y9x^8y^9 in the expansion of (3x+2y)17(3x + 2y)^{17}?

Solution

(3x+2y)17=k=017(17k)(3x)17k(2y)k(3x+2y)^{17} = \sum^{17}_{k=0}\binom{17}{k}(3x)^{17-k}(2y)^k

The coefficient of x8y9x^8y^9 is (179)3829=382917!8!9!\tbinom{17}{9} \cdot 3^8 \cdot 2^9= \frac{3^8 \cdot 2^9 \cdot 17!}{8!9!}.

9. What is the coefficient of x101y99x^{101}y^{99} in the expansion of (2x3y)200(2x-3y)^{200}?

Solution

(2x3y)200=k=0200(200k)(2x)200k(3y)k(2x-3y)^{200} = \sum^{200}_{k=0}\binom{200}{k}(2x)^{200-k}(-3y)^k

The coefficient of x101y99x^{101}y^{99} is (20099)2101(3)99=2101399200!101!99!\tbinom{200}{99} \cdot 2^{101} \cdot (-3)^{99}= -\frac{2^{101} \cdot 3^{99} \cdot 200!}{101!99!}.